12. Development of axial skeleton and extremities. Muscles and skin.

Timeline

- 19 days: somites emerge in the gastrula
- 4 weeks: sclerotome cells migrate along the neural tube
- 5 weeks: mesenchymal blastema of the axial skeleton
- 6 weeks: mesenchymal blastema of limbs
- 8 weeks: rotation of the limbs
- 8 weeks: individual muscles differentiate
- 10 weeks: primary ossification centres in diaphyses
- 3 months: bones of the skull develop
- 9 months: diaphyses ossified; secondary ossification centres emerge

In general, bone tissue originates from:

- the of the somitic paraxial mesoderm, namely from the ventromedial part, the sclerotome
- the head non-segmented mesoderm
- the somatopleuric lateral plate mesoderm ightarrow skeleton of limbs
- the neural crest, which differentiates into the head ectomesenchyme
- mesenchyme
 - its cells migrate and differentiate into fibroblasts, the source of the desmogenous (intramembranous) ossification
 - its cells imgrate and differentiate into chondroblasts, the source of the chondrogenous ossification of the hyaline cartilage models

Limbs

- week 4: limb buds
 - o somatopleuric mesenchyme differentiates into bones and connective tissues
 - o myogenic cells, angioblasts and nerves grow in
 - o surface ectoderm thickens into the apical ectodermal ridge
- week 6: each limb is divided proximodistally into three components:
 - o autopod (carpals, metacarpals, digits, or tarsals, metatarsals, toes)
 - o zeugopod (radius and ulna, or tibia and fibula)
 - o stylopod (humeus, or femur)
- in flattened handplates and footplates, the apical ectodermal ridge is separated by cell death into five parts and fingers and toes are formed
- the geometrical axis of the handplate is close to the 4th finger
- in week 6, hyaline cartilage models differentiate
- between the primordia of adjacent bones/cartilages, interzones are formed; the mesenchyme of the interzones differentiates into articular cartilage, synovial membranes, ligaments and joint capsules
- week 12: primary ossification centers appear in diaphyses (bone shafts) of all long bones
 - o the subperichondral cartilage of the diaphysis undergoes desmogeneous ossification
 - blood vessels invade the primary ossification centers, carrying also osteoprogenitor cells, which turn into osteoblasts; the cartilage is destroyed by chondroclasts
 - o the cartilage is replaced by bone tissue via the chondrogeneous ossification

- o the bone marrow cavity is formed
- at birth, diaphyses are usually ossified; the epiphyses are still cartilaginous
 - postnatally, secondary ossification centers appear in the epiphyses of long bones; in the distal epiphysis of femur, this center appears even before birth
 - the epiphyseal growth plate temporarily persists between epiphysis and diaphysis, producing new bone tissue towards the diaphysis
- small and short bones (e.g., phalanges) have only one epiphyseal plate at one of its extremities
- irregular bones (e.g., vertebrae) have usually more secondary centers
- bone age is based on the presence of various ossification centers; it can be assessed using radiological methods (RTG) to determine the proper maturation of skeleton

Limb defects

- meromelia partial absence of a limb; amelia complete absence of a limb
- phocomelia rudimentary hands and feet are attached to the trunk by small, irregularly shaped bones; between 1957-1962, approx. 12,000 children were bonr with limb malformations, because their mothers had taken a drug named thalidomide (Contergan) as a sleeping pill and antinauseant; currently, the drug is being used to treat mycobacterial infections (leprosy, tuberculosis of skin)
- syndactyly- fusion of fingers or toes as a results of insufficient apoptosis
- polydactyly extra fingers present (praepollex, postminimus)
- clubfoot (pes equinovarus) abnormal plantar flexion of the talocrural joint
- amputations and ring constrictions of limbs or fingers/toes may be caused by amniotic bands, i.e., adhesions between the amnion and skin surface
- congenital hip dislocation and laxity of the hip joint capsule: an underdevelopment of the acetabulum and head of the femur; affects approx. 5% of infants in Central Europe; it is treated by abduction

Vertebrae and vertebral column

- 38-40 paired somites develop within the segmented paraxial mesoderm
 - o a microscopic cavity within each somite is called somitocoel
 - o each somite develops into three parts:
 - sclerotome (medial): produces the bone forming cells for the vertebrae and ribs
 - myotome: forms muscle cells precursors
 - dermatome (lateral): differentiates into the dermis of the skin
- the caudal ½ of each sclerotome fuses with the cranial ½ of the adjacent lower sclerotome, which is called a resegmentation; thus, a body of a vertebra is formed; from the body, following processes grow
 - o neural processes → these surround the spinal cord and close the vertebral foramen, they fuse into spinous processes
 - o transverse processes
 - o costal processes
- (the cranial ½ of the C1 somite becomes part of the base of the skull)
- myotomes keep the original somitic segmentation \rightarrow paravertebral muscles connect the adjacent vetrebral bodies
- the notochord degenerates within the vertebrae, but it persists within the intervertebral discs as the nucleus pulposus

Defects of vertebral column

- asymmetric fusion of halves of vertebrae, missing half of a vertebra (hemivertebra) → scoliosis
- variable number of vertebrae (24±1): the L5 may be sacralised or the S1 may be lumbalised
- spina bifida: incomplete fusion of neural processes \rightarrow vertebral foramen not closed
 - o s.b. occulta (hidden defect, sometimes without symptoms)
 - o s.b. cystica associated with neural tube defects
 - o folic acid is used in decreasing the risk of defect closure of neural tube

Ribs, sternum, and clavicle

- the ribs grow from the costal (costiform) processes of the thoracic vertebrae
- ventrally, costal cartilages persist
- the sternum develops independently in the parietal layer of lateral plate mesoderm in the ventral body wall
- paired sternal bars fuse in the midline to form cartilaginous manubrium, sternebrae, and xiphoid process
- the clavicle ossifies mostly via the desmogeneous ossification

Muscles

- skeletal muscle develops
 - o from the somatopleuric mesoderm
 - o from the paraxial mesoderm: somites and head mesoderm
- smooth muscle develops
 - o from the splanchnopleuric mesoderm
 - o from the neural crest (head and neck region)
 - o from ectoderm (myoepithelium)
- cardiac muscle develops
 - o from the cardiogenis mesoderm and splanchopleura surrounding the heart tube
- kosterní svalovina: z paraxiálního mesodermu, ze somitů a z hlavového nesegmentovaného mesodermu

Skeletal muscle

- myotomes divide into
 - o epimeric muscles (epaxial)
 - dorsomedial
 - rami posteriores of the spinal nerves
 - deep muscles of the back
 - hypomeric muscles (hypaxial)
 - ventrolateral
 - rami anteriores of the spinal nerves
 - lateral and ventral body wall muscles
 - limb muscles: flexors & extensors
- − myogenic cells → myoblasts → merging into myotubes → myofibrils produced → nuclei below the sarcolemma → skeletal muscle fibres

Origin of selected muscles

- deep muscles of the back: from the epimeres
- C hypomeres \rightarrow mm. scaleni, m. geniohyoideus, prevertebral muscles
- Th hypomeres
 - $\circ \rightarrow$ mm. intercostales externi, interni et intimi, m. transversus thoracis
 - → m. obliquus externus abdominis, m. obliquus internus abdominis, m. transversus abdominis
- L hypomeres \rightarrow m. quandratus lumborum
- S, Co hypomeres → diaphragma pelvis, diaphragma urogenitale, m. sphincter ani externus
- ventral parts of hypomeres
 - o C: infrahyoid muscles
 - o T: m. rectus abdominis

Innervation of selected muscles according to the embryological origin

– m. rectus bulbi superior, m. rectus	 n. III (oculomotorius)
– m. obliquus superior	 n. IV (trochlearis)
– mm. masticatorii	 n. V (trigeminus)
 m. rectus lateralis 	 n. VI (abducens)
– mm. faciei	 n. VII (facialis)
 m. stylopharyngeus 	 n. IX (glossopharyngeus)
– mm. laryngis	 n. X. (vagus), n. XI (accessorius)
– mm. linguae	 n. XII (hypoglossus)

Limb muscles

- myogenic mesenchyme of the limb buds
- − rami anteriores of the spinal nerves divide into dorsal and ventral branches \rightarrow connecting again \rightarrow nervous plexuses
- upper limb: segments C4-Th1
 - o extensors and supinators
 - from the dorsal blastema
 - n. radialis from dorsal branches of segmental nerves
 - o flexors and pronators
 - ventral
 - n. ulnaris, n. medianus from ventral branches
 - lower limb: segments L1-S2
 - o extensors
 - from the dorsal blastema
 - n. femoralis, n. peroneus communis from dorsal branches of the segmental nerves
 - o adductors and flexors
 - from the ventral blastema
 - n. obturatorius, n. tibialis from ventral branches

Skin

- Ectodermal epidermis
 - o from the embryonic periderm
 - o since month 5 str. basale/spinosum/granulosum/corneum
 - o melanocytes from the neural crest (melanosomes into the keratinocytes)
 - \circ $\;$ hair follicles and skin glands invaginated into the dermis
 - \circ $\,$ fingerprints are being formed since month 3 until birth $\,$
- Mesenchymal dermis + subcutaneous connective tissue
 - from the lateral somatopleuric mesoderm, dermatomes of the somites, from ectomesenchyme
 - o dermal papillae
 - o connective sheaths of the hair follicles, m. arrector pili
- vernix caseosa protects the epidermis from the amniotic fluid; it is produced by the sebaceous glands
- lanugo is lost/shed before the birth
- mammary ridge develops between the axilla andinguinal region
 - \circ thoracic part persists only \rightarrow approx. 20 epithelial primordia of lactiferous ducts
 - o polythelia accessory nipples
 - o polymastia accessory breast glands