4. Development of nervous system. Neural plate. Brain vesicles. Sensory organs.

Development of the central nervous system

- neurulation = ectoderm in front of the primitive node thickens to form the neural plate (week 3, day 17-18)
- neural plate bends to form a **neural groove** in the middle
- the borders are bulging as the neural **folds**
- the neural groove invaginates and closes to form the **neural tube**; the closure of the neural tube starts in the cervical region and proceeds towards the cranial (anterior) neuropore and the caudal (posterior) neuropore; the neuropores are last segments to be closed (the cranial neuropore on day 25, 18-20 somitic embryo; the caudal neuropore on day 27)

Segmentation of the neural tube

- − a series of thickenings and constrictions = neuromeres \rightarrow regional segmentation
- the caudal segment develops into the spinal cord
- the cranial segments for the brain vesicles
 - o prosencephalon (forebrain), which will futher differentiate into
 - telencephalon
 - diencephalon
 - o mesencephalon (midbrain)
 - o **rhombencephalon** (hindbrain), which will further be divided into
 - metencephalon, which forms the
 - pons Varoli
 - cerebellum
 - myelencephalon, which becomes the medulla oblongata
- there are flexures: cephalic flexure in the mesencephalic region; pontine flexure between the metencephalon and myelencephalon; cervical flexure between the metencephalon and the spinal cord

Histogenesis of the neural tube

- histogenesis starts with the pseudostratified columnar epithelium of the primitive neural tube → neuroblasts and gliablasts
- **neuroblasts** = precursors of neurons
 - $\circ~$ temporarily apolar neurons, forming primitive dendrites and axon \rightarrow bipolar and multipolar neurons
 - o the bodies neuroblasts form the grey matter
 - o the nerve processess of the neuroblasts form the white matter
- gliablasts (spongioblasts) = precurors of glia cells
 - o in the mantle layer they differentiate into plasmatic and fibrillar astrocytes
 - oligodendrocytes form myelin sheaths surrounding the axons and dendrites of the neurons
 - \circ periventricular neuroepithelium \rightarrow ependymal cells lining the CNS cavities
 - (microglia cells do not originate from the neuroepithelium, but they migrate into the CNS from the mesenchyme)
- proliferation of neuroblasts \rightarrow thickening of the neural tube:

Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2nd year student of General medicine and Dentistry **(cc)** EY-NO-ND <u>License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/</u>

- ventral basal plate = motoric region of the spinal cord; contains ventral motor horns with efferent motor neurons
 - medial somatomotoric nuclei of the cranial nerves XII, VI, IV, III
 - lateral somatomotoric nuclei of the cranial nerves IX, X, XI, VII, V
 - visceromotoric nuclei: preganglionic parasympathetic neurons of the cranial nerve IX, X, VII, III
- **dorsal alar plate** = sensory area; dorsal horn with afferent sensory neurons entering the spinal cord from the dorsal root of the spinal nerves
 - lateral sensory nucleus: n. VIII,
 - somatosensory nucleus: n. V.
 - viscerosensory nuclei: n. V, n. VII, n. IX, n. X
- o sulcus limitans separates the basal plate from the alar plate
- the right ant the left alar plates are connected by the dorsal roof plate
- \circ $\;$ the right ant the left basal plates are connected by the ventral floor plate
- the lateral horns develop in the region Th1-Th12 and L1-L3 (thoraco-lumbal sympathetic nervous system)

Positional changes of the spinal cord

- in the 3rd month the spinal cord extends the entire length of the body
- the vertebral column and the dural sac lengthen more rapidly than the neural tube \rightarrow disproportionate growth \rightarrow spinal nerves run obliquely
- the dura remains attached to the vertebral column \rightarrow the dural sac
- the spinal cord in newborns extends to the body of the L3 vertebra
- extension of the pia mater = filum terminale internum
- in the adult, the spinal cords extends to the L1/L2 level (in male) or to the L2 level (female), whereas the dural sac continues to the S2 level → lumbar puncture of the subarachnoideal space is to be done between L3/L4 (or L4/L5)

Brain

- telencephalon
 - o lamina terminalis in the middle, hemispheres are lateral
 - lateral ventricles develop within the cerebral hemispheres; they communicate via the interventricular foramen of Monro with the 3rd ventricle
 - basal regions of hemispheres are bulging into the lateral ventricles as the basal ganglia
 - ependyme and the vascularised mesenchyme forms the choroid plexus of the lateral ventricles
 - o hippocampus is also bulging into the lateral ventricles
 - hemispheres are growing over the diencephalon, mesencephalon and the cerebellum
 - pallium = cell layer on the surface of hemispheres
 - paleopallium in the region lateral to the corpus striatum \rightarrow paleocortex with 3 layers
 - archipallium in the medial part \rightarrow archicortex with 3 cell layers
 - neopallium covering most of the hemispheres \rightarrow 6 layers of the cerebral neocortex
 - \circ migration waves of neuroblasts proceed towards the brain surface \rightarrow cortical cytoarchitectonics emerges

Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2nd year student of General medicine and Dentistry **(cc)** EY-NO-ND <u>License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/</u>

 commissurae cerebri connecting the hemispheres (anterior, hippocampal/fornix commissure, corpus callosum); posterior and habenular commissure

diencephalon

- \circ its cavity \rightarrow 3rd ventricle; the roof forms the tela choroidea ventriculi III.
- o epithalamus with the epiphysis (melatonin, circadian rhythms)
- thalamus and its nuclei connecting pathways to the brain cortex
- $\circ~$ growth of the thalamus → bulging into the 3rd ventricle → adhesio interthalamica in the midline
- o hypothalamic nuclei involved in homeostatic regulations
- infundibulum → neurohypophysis (joining the Rathke's stomodeal pouch → hypophysis)
- \circ diencephalon \rightarrow connected with the optic vesicles via the nerve II

mesencephalon

- \circ its cavity → aquaeductus mesencephali (Sylvii)
- o basal plate with motor nuclei
- there are the crura cerebri below the basal plate, they contain axons connecting the brain cortex with the spinal cord
- anterior (superior) colliculus (reflex centres for visual reflexes); posterior (inferior) colliculus (synaptic relay for auditory reflexes)
- o nucleus ruber and the substantia nigra

– pons

- o contains pathways connecting the brain cortex, cerebellum, and spinal cord
- the basal plate has three rows of nuclei of cranial nerves and nuclei of the reticular formation
- the alar plate contains sensory nuclei and also the pontine nuclei (connecting fibres between the brain cortex and the cerebellum)

cerebellum

- o vermis in the midline; lateral hemispheres cleaved with parallel grooves
- \circ migration of neuroblasts \rightarrow three layers of the cerebellar cortex; other cells differentiate into the neurons of the cerebellar nuclei

medulla oblongata

- o unlike the spinal cords, the alar plates are laterally widely open
- o the basal plate has three groups of motor nuclei
- o alar plate has three groups of sensory nuclei
- the central canal in the middle connects the brain cavities with the central canal of the spinal cord

Neural tube defects

- a broad range of defects affecting the spinal cord, meninges, vertebrae, vertebral muscles or the skin; some of them may be prevented by folic acid
- spina bifida = a neural tube defect affecting the spinal region
 - spina bifida occulta: a defect of fusion of vertebral arches; does not involve spinal cord defects; usually causes no symptoms; mostly in the lumbosacral region
 - spina bifida cystica: a severe defect with neural tissue and/or meninges protruding through a defect in the vertebral arches and skin
 - meningocele = herniation of the meninges

Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2nd year student of General medicine and Dentistry **(cc)** EY-NO-ND <u>License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/</u>

- meingomyelocele = herniation of the meninges and nervous tissue (which is damaged)
- abnormal fixation of the spinal cord within the vertebral canal → displacement of cerebellum into the foramen magnum (Arnold-Chiari syndrome) → the cerebrospinal fluid flow is blocked → hydrocephalus
- myeloschisis and rhachischisis = the neural tube fails to close
- holoprosencephaly: the telencephalon and the face fails to divide
- exencephaly, anencephaly the cranial neuropore fails to close → the skull vault is missing → the brain is not covered and protected
- hydrocephalus with abnormal accumulation of cerebrospinal fluid; mostly caused by an obstruction of the aquaeduct of Sylvius) → skull bones are expanding

Myelination

- in the CNS: processes of oligodendrocytes; starts in month 4, continues after birth up to 2 years (and extends even later into the childhood)
- in the PNS: Schwann glia cells, since month 4

Cranial nerves

- their nuclei appear already in the week 4
- n. I originates from the telencephalon; n. II from the diencephalon; n. III in the mesencephalon; the remaining cranial nerves develop within the brain stem
- somatomotoric nuclei of nerves IV, V, VI, VII, IX, X, XI, XII
- visceromotoric nuclei of nerves VII, IX, X
- sensory ganglia of cranial nerves originating from ectodermal neural placodes and from the neural crest: nerves I, VIII, V, VII, IX, X
- parasympathetic ganglia of nerves III, VII, IX, X

Neural crest

- originates along the neural folds (except of the prosencephalic region)
- its cells disseminate and migrate into the periphery since the week 4 to contribute to a number of structures, i.e.:
 - o in the head and neck region
 - cranial nerve sensory ganglia and ganglia of nerve V, VII, IX, X
 - ectomesenchyme of the branchial arches
 - odontoblasts
 - o the aortico-pulmonary septum
 - o in the thoracolumbar region:
 - the dorsal root spinal ganglia
 - postganglionic autonomic neurons of the enteric nerve system
 - the medulla of the suprarenal glands
 - melanocytes
 - o Schwann cells

The ear

- internal ear
 - thickened ectodermal in the rhombencephalic region = otic placode
 - o the otic placode invaginates and forms a hollow otocyst (otic, auditory vesicles)

Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2nd year student of General medicine and Dentistry License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/

- o the otocyst differentiates into a membranaceous labyrinth lined with an epithelium
 - ventral saccule
 - cochlear duct grows from the saccule and contains the organ of Corti
 - dorsal utricle branching into semicircular canals and the endolymphatic duct
- middle ear
 - the tympanic cavity originates mainly from the entoderm of the 1st pharyngeal pouch and therefore communicates with the nasopharynx via the Eustachian tube
 - auditory ossicles: malleus and incus originate from the 1st mandibular pharyngeal cartilage; the stapes originates from the 2nd pharyngeal cartilage
- external ear:
 - the auricle develops from six mesenchymal proliferations (auricular hillocks) surrounding the 1st pharyngeal cleft
 - o the external auditory meatus develops from the first pharyngeal cleft
 - the eardrum has an ectodermal lining, connective tissue layer, and an entodermal epithelium

Eye

- optic vesicles and the lens
 - o the wall of the diencephalon forms lateral outpocketings in the week \rightarrow optic vesicles
 - the vesicles grow laterally and invaginate into optic cups that induce thickening of the surface ectoderm = the lens placode
 - the lens placode invaginates and forms a lens vesicle (week 5) which migrates deeper into the optic vesicle
 - the posterior epithelial cells of the lens grow towards the anterior epithelium, thus filling the cavity of the lens vesicle and forming a solid lens
 - the rest of the surface ectodermal optic placode differentiates into the cornea
- retina
 - o the outer layer of the optic cup becomes the pigment layer of the retina
 - the inner layer of the optic cup becomes the neural layer of the retina and differentiates into three layers of neurons (photoreceptors=rods+cones, bipolar neurons, ganglion cells) and layers of neuroglia
- the iris, the ciliary body and the choroid represent the vascular layer of the eyeball and they differentiate from the vascularised mesenchyme
- the fibrous layer of the eyeball differentiates from the mesenchyme: the sclera (dense irregular collagenous connective tissue), the cornea (avascular stroma covered with the outer ectodermal epithelium and with the inner endothelium lining the anterior chamber)
- the hyaloid artery (from the ophthalmic artery, which branches from the internal carotid art.)
 - o supplies the retina and the lens; runs through the vitreous body
 - \circ the retinal part persists \rightarrow the central artery of the retina
 - o the lenticular plexus disappears, leaving a hyaloid canal within the vitreous body
- the optic nerve
 - o represents the optic stalk connecting the optic cup with the diencephalon
 - the optic stalk has a ventral groove surrounding the hyaloid artery (and vein)

Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2nd year student of General medicine and Dentistry License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/

- choroid fissure = a temporary groove on the ventral surface of the optic stalk; this has to close in the week 7 and the hyaloid artery (later the central artery of the retina) becomes entrapped within the optic nerve
- eye abnormalities
 - coloboma iridis = the choroid fissure fails to close; it may affect the iris, the ciliary body, the retina, or even the optic nerve
 - o persistence of the iridopupillary membrane
 - o inborn cataracta of the lens
 - o persistence of the hyaloid artery
 - o microphalmia (frequently caused by intrauterine infections)
 - o anophtalmia
 - o aphakia = absence of the lens
 - cyclopia, synophtalmia = due to a loss of midline issue, the optic cups and the eyes merge in the midline; it is associated with holoprosencephaly (merged hemishperes of the telencephalon)