Blood II

Agranulocytes

- lymphocytes
- monocytes

Hematopoiesis

- •mesoblastic
- hepatosplenic
- medullary

Stages of h.

Formed elements of the blood

- erythrocytes (RBC = red blood cells)
- thrombocytes (platelets)
- leukocytes (WBC = white blood cells)
 - granulocytes: specific granules and segmented nuclei (polymorphonuclears)
 - neutrophilic
 - eosinophilic
 - basophilic
 - agranulocytes: without specific granules, spherical to kidneyshaped nucleus (mononuclears)
 - lymphocytes
 - monocytes

Lymphocytes

- small: 6-8 µm (90%)
- medium: 8-12 μm
- large < 18 μm, lymphoblasts in lymphoid organs
- round-shaped nucleus, dense chromatine
- 20-45 % of peripheral blood leukocytes
- solid lymphoid organs
- MALT = mucosa associated lymphoid tissue (BALT, GALT)
- 2% circulating
- adaptive immunity
- differentiate into effector immune cells, T- and B-memory cells

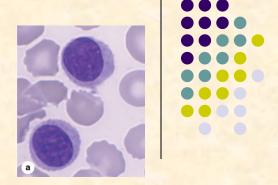
Lymhocytes

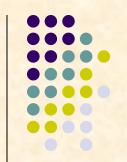
- CD markers
 - cluster of differentiation
 - imunphenotype
 - receptors, ligands, parts of signalling pathways, adhesion molecules
- B-lymphocytes
- T-lymphocytes
 - T_H helpers
 - T_CT cytotoxic
 - Treg regulatory, supressors
- NK-cells, natural killers

- B-lymphocytes
 - approx. 15% of circulation lymphocytes
 - bursa Fabricii, B-dependent lymphocytes
 - diferentiation
 - plasma cells → Immunoglobulins; effector cells of humoral immunity
 - memory cells

Immunoglobulins = antibodies

- circulating soluble antibodies
- chains
 - heavy: μ, γ, α, ε, δ
 - light: κ, λ
- domains
 - constant
 - variable
- classes = isotypes
 - IgM: membrane-bound (B-cells) or soluble pentamers; early response
 - IgG: the major Ig in serum; majority of antibody-based immunity; capable of crossing the placenta
 - IgA: found in mucosae, saliva, breast milk; stabilized by secretory glycoproteins to form dimers
 - IgE: binds to mast cells and basophils (type I allergic reaction) and eosinophils (anti-parasitic reactions)
 - IgD: on B-cells; the role in serum is uncertain
- agglutination, opsonization → enhanced phagocytosis and killing
- activating the complement proteins




T-lymphocytes

- T_H helpers
 - CD4+
 - naive Th activated by APC → cytokines
 - regulating lymphocytes and macrophages
 - TH1-cells → activating NK, macrophages, Tc-lymphocytes, response on intracellular pathogens
 - TH2-cells → stimulting B-lymphocytes → IgG, IgA a IgE, activating eosinophils, against i extracellular antigens
 regulatory T-lymphocytes supressing the immuno response = Treg =Ts (supressors), autotolerance

T_CT cytotoxic

- CD8
- activate by contacting the antigenes + class I MHC → cytolytic granules
 - perforins → permeabilizing the plasmalemma
 - granzymes → apoptosis induced
 - activating Fas receptors → cell death of the target cells
 - activating macrophages

- NK-cells, natural killers
 - approx. 10 % of circulating lymphocytes
 - perforins and granzyme

 destroying cells without proper class I
 MHC, thus targeting:
 - tumor cells
 - virus-transformed cells

Monocytes

- 12-20 µm
- oval or kidney-shaped nucleus
- less dense chromatine than in lymphocytes
- small azurophilic granules (lysosomes)
- 2-12 % of peripheral blood WBC
- circulating 1-3 days
- diapedesis -> macrophages
- phagocytosis both innate and acquired immunity

Mononuclear phagocyte system

(formerly: reticuloendothelial)

- professional macrophages
 - tissue macrophages
 - Kupffer's cells
 - dendritic cells
 - osteoclasts
 - microglia
- phagocytosis
 - phago-lysosome
 - cytokines released -> chemotaxis of neutrophils et al.
 - antigen presentation for lymphocytes
 - producing growth factors

Immunity

- innate = natural
 - neutrophils, macrophages
 - eosinophils
 - NK
- acquired = adaptive
 - humoral = antibody-mediated
 - B-lymphocytes → plasma cells → antibodies
 - cell-mediated
 - T-cells
 - APC
 - dendritic cells
 - macrophages

The discovery of acquired immunological tolerance (P. B. Medawar, NP, 1960)

- extracted cells from mouse embryos
- injected into another mouse embryos of different strains
- when the recipient mouse developed into adult, skin grafting from the original strain was performed
- there was no tissue rejection
- thus, the acquired immuno toelarnce was discovered
- foundation of transplantation immunology

Hematopoiesis

- ontogeny
 - mesoblastic period
 - extraembryonic mesenchyme of the yolk sac
 - intraembryonic mesenchyme
 - blood islands
 - week 3 month 3
 - angioblasts → endothelium, proerythroblasts, myeloblasts
 - hepatosplenic period
 - month 2-8
 - mesenchyme of liver and spleen
 - extramedullary hematopoiesis in adults (pathology)
 - medullary period
 - since month 5
 - red bone marrow

Bone marrow

- red
 - newborn/children: most of the skeleton
 - adults: sternum, bodies of vertebrae, ribs, shoulder blade, pelvis, flat bones of the skull, proximal epiphyses of humerus/femur
 - loose reticular connective tissue
 - fenestrated blood sinusoids
 - basal lamina discontinuous or absent
 - adipocytes
 - macrophages (nuclei of normoblasts etc.)
 - cytology: bone marow aspiration → smears
 - trephine needle biopsy (trepanobiopsy) including the trabecular bone
- yellow
 - progressive fatty replacement → adipose tissue

Hematopoietic cells

- 1. pluripotent hemopoietic stem cells
 - asymmetric division & self-renewal
 - → myeloid and lymphoid stem cell
- differentiate into progenitor cells = CFU (colony-forming units)
 - CFU-E: erythroid lineage
 - CFU-Meg: thrombocytic lineage
 - CFU-GM: granulocyte-monocyte lineage
 - CFU-L: lymphoid lineage
- 3. CFU produce precursor cells ("-blasts")
 - mitotic division
 - no self-renewal
- 4. differentiate into mature cells
 - typical morphological characteristics
 - differentiated functional activity

Hematopoiesis

microenvironment of bone marrow, niche

- paracrine and endocrine differentiating and growth factors
 = colony-stimulating factors (CSF) = hematopoietins
 - erytropoetin: kidneyy & liver, stimulated by hypoxia
 - thrombopoetin: liver
 - cobalamin B12 vitamin (+intrinsic factor), folic acid B9 vitamin, Fe,...
- daily per kg of body weight
 - 2.5×10^9 erythroocytes
 - 1×10⁹ granulocytes
 - 2.5×10⁹ platelets

Lineages

- lymphoid lineage, lymphopoiesis
 - progenitors migrating into lymphoid organs
 - central lymphoid organs (bone marrow and thymus)
 - pluripotent stem cell → CFU-L → lymphoid stem cell → B- and T-lymphoblast → B- and T-lymphocyte

- myeloid lineages
 - erythropoiesis: pluripotent stem cell → CFU-E → proerythroblast → basophilic erythroblast → polychromatophilic → orthochromatophilic (eosinophilic) → normoblast (nucleus ejected) → reticulocyte → erythrocyte
 - thrombopoiesis: pluripotent stem cell → CFU-Meg → megakaryoblast → megakaryocyte → thrombocyte
 - granulopoiesis: pluripotent stem cell → CFU-GM → myeloblast → promyelocyte → myelocyte (Ne, Eo, Ba) → metamyelocyte (Ne, Eo, Ba) → granulocyte (Ne, Eo, Ba)
 - monopoiesis: pluripotent stem cell → CFU-GM → monoblast → promonocyte → monocyte → macrophage